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a b s t r a c t 

Constrained clustering is a new fashion of semi-supervised learning which focused on enhancing the 

quality of the partition by utilizing pairwise constraints. Though many constrained clustering methods 

have an excellent performance in single-view clustering, they can’t be directly applied to multi-view sce- 

nario. In this paper, we propose a novel constrained spectral clustering approach for multi-view data, 

which explicitly imposes pairwise constraints as a series of linear constraints on the unified indicator 

matrix. To our best knowledge, this is the first work on multi-view constrained spectral clustering. Our 

approach can differ the importance of different views via the auto-weight learning strategy. Simultane- 

ously, the views which contain much noisy or irrelevant information are also automatically eliminated, 

thereby improving the prediction performance. Extensive experiments conducted on various multi-view 

datasets demonstrate that the proposed approach can efficiently utilize pairwise constraints and outper- 

forms the state-of-the-art approaches. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years, constrained clustering, a new fashion of semi-

upervised clustering algorithm, has been successfully studied in

lenty of real-world applications, such as GPS-based map refine-

ent [1] , person identification [2] , community detection [3] and

o on. Benefiting from pairwise constraints, a kind of supervised

nformation, constrained clustering algorithms can achieve a big

mprovement over unsupervised clustering algorithms. A pairwise

onstraint including “must-links (ML)” and “cannot-links” (CL) be-

ween two instances indicates whether they belong to the same

luster or not. These constraints occur in a variety of applications

nd domains. For example, social networks contain not just “trust”

ink (ML) but also “distrust” link (CL) between two users [4] ; in

o-citation network, if we find the keywords of two papers are ex-

ctly similar, we can denote the relationship of these two papers

s ML. On top of that, pairwise constraints are obtained with less

uman effort [5] than other supervised information, such as class

abels. In other words, these constraints can be collected more eas-

ly and conveniently thus the cost of constrained clustering will

e much less than other semi-supervised clustering algorithms. In

any real-world applications, data are dramatically collected from
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ultiple modalities or presented by multiple representations with

he rapid development of the Internet and technology. For exam-

le, the web page includes the content and the hyperlink [6] ; pic-

ures can either be described by their color or texture feature. Nev-

rtheless, many constrained clustering methods can only be ap-

lied to data with a single modality [7–9] . Thus, how to effectively

nd efficiently utilize pairwise constraints for multi-view clustering

emains a crucial problem to explore. 

In essence, pairwise constraints don’t provide explicit class

nformation and are not possible to infer class label directly. This

roperty of pairwise constraints increases the difficulty of utilizing

hem for clustering. In multi-view scenario, besides the instances

hare the latent consistent clustering in all views, pairwise con-

traints also ought to be coherent. From these perspectives, it’s

rduous to efficiently incorporate pairwise constraints to multi-

iew clustering. So far, only a handful of studies have provided

olutions. In [10] , Eaton et al. presented a Co-EM algorithm. It

terated the E-step in one view to utilize the constraints through

onstrained k-means (a single view constrained clustering method)

ollowed by the M-step in the other view to transfer these con-

traints and update the clustering. Inspired by label propagation,

u et al. [11] enforced pairwise constraints via horizontal and

ertical constraint propagation. In [12] , Zhao et al. proposed

ulti-view matrix completion (MVMC) for multi-view clustering

ith pairwise constraints, which naturally encoded the ML and

L constraints to an observed similarity matrix. In addition, it’s

orthy to mention that the available pairwise constraints are

till extremely scarce in reality. It becomes the second puzzle
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to multi-view constrained clustering. Existing MVMC method

[12] suffered a failure and performed poorly due to the limitation

of matrix completion with few pairwise constraints. Furthermore,

since different views provide partial information on the underlying

structure, their effect on clustering varies from each other. Obvi-

ously, we cannot ignore the discrepancy across views. It’s a pity

that most multi-view constrained clustering methods can’t differ

the importance of different views and may tend to perform poorly.

In this paper, we propose an auto-weighted multi-view semi-

supervised clustering approach with pairwise constraints called

Multi-View Constrained Spectral Clustering ( MVCSC ). Firstly, MVCSC

explicitly imposes ML and CL constraints as a set of linear con-

straints on the unified indicator matrix. This process effectively

incorporates pairwise constraints to clustering. Concurrently, it

guarantees the consistency of pairwise constraints in multi-view

scenario. To trade off between the number of satisfied constraints

and the quality of partition, MVCSC uses L 1 regularizer on penalty

vector of linear constraints in the objective function. MVCSC also

introduces an auto-weight learning strategy to differ the impor-

tance of different views, thereby improving the prediction perfor-

mance. The main contributions of this paper are summarized as

follows: 

• To the best of our knowledge, we propose the first multi-view

constrained spectral clustering method in which efficiently uti-

lizes pairwise constraints. 

• We present an auto-weighted learning strategy, such that the

view weights are calculated automatically and the irrelevant

views will be eliminated. 

• We propose an effective alternating optimization method to

solve the objective function. 

• We conduct extensive experiments on various multi-view

datasests, which demonstrate the advantages of our technique

over the state-of-the-arts approaches. 

The rest of the paper is organized as follows. We give a brief

review of related work in Section 2 . In Section 3 , the basic nota-

tions and background are introduced firstly, then the multi-view

constrained spectral clustering is presented. In Section 4 , we give

an iterative algorithm to optimize the objective function. All the

experimental results are shown in Section 5 . Finally, we conclude

our work in Section 6 . 

2. Related work 

During the past few years, graph-based learning [13–15] has at-

tracted much attention. Clustering is one of the fundamental unsu-

pervised learning techniques in machine learning and data mining

[16,17] . Spectral clustering is a well-known graph-based clustering

algorithm that considers each data point as a node and each re-

lationship as an edge in the constructed graph. In recent years,

spectral clustering has become one of the most popular cluster-

ing algorithms due to its adaptation in arbitrary data distribu-

tion and well-defined mathematical framework [18] . For relaxing

the NP-hard problem of spectral clustering, it has two classical

transformation based on graph cut theory: RatioCut [19] and the

normalized cut (Ncut) [20] . When accessing to multi-view data

collected from multiple sources or represented by multiple rep-

resentation, multi-view spectral clustering is able to learn a con-

sistent clustering from multiple graphs (i.e., views). Kumar et al.

[21] proposed a spectral clustering framework based on co-

regularization that make the clustering hypotheses on different

graphs agree with each other. Another well-know multi-view spec-

tral clustering approach based on co-training was proposed in [22] .

However, this kind of methods failed to differ the importance of

different graphs and may behave poorly when an unreliable view

is added. To address this issue, some approaches adaptively learn a
eight for each graph during the optimization including the meth-

ds in [23–25] . Besides multi-view spectral clustering, the group of

ulti-view clustering methods also includes multi-view subspace

lustering [26] , multi-view nonnegative matrix factorization clus-

ering [27] , multi-kernel based multi-view clustering [28] and so

n. More advanced multi-view clustering approaches can refer to

29] . 

Single view constrained clustering aims at partitioning with

airwise constraints in single view scenario. Current approaches,

ostly based on classical clustering methods, have been success-

ully studied. Wagstaff et al. [1] firstly incorporated pairwise con-

traints to the K-means algorithm. Subsequently, other constrained

-means approaches were proposed [7–9] . Wang et al. [30] de-

eloped a nonnegative matrix factorization method with pairwise

onstraints. Significantly, constrained spectral clustering is an area

f active research within the broad domain of constrained cluster-

ng. In this field, a great many methods have been proposed. One

f the ways is spectral learning [31] which sets the similarity be-

ween a pair of constrained points to 1 for ML or to 0 for CL. This

ethod only adjust similarity between constrained points without

onstraint propagation. The opposite is that, Lu et al. [32] proposed

 constraint propagation framework that the unconstrained data

an be constrained by learning the pairwise similarity. Similarly,

ang et al. [33] proposed a self-teaching framework for constraint

ropagation. In [9] , a flexible constrained spectral clustering was

resented, which explicitly encoded pairwise constraints as a new

aplacian matrix and could be solved in polynomial time. However,

his method is valid only in two-class partition case. Another work

n [34] which imposed pairwise constraints as a series of linear

onstraints suffered the same limitation. 

Multi-view constrained clustering is a class of constrained clus-

ering on multi-view data. Due to the difficulty of incorporating

airwise constraints to multi-view clustering, pairwise constraints

re rarely studied in multi-view scenario. In [10] , Eaton et al. pro-

osed a Co-EM algorithm which iteratively propagated the con-

traints on the one view via constrained K-means at the E-step

hich followed by the M-step in the other view to transfer those

onstraints and update the clustering. Nevertheless, this method

btained a clustering result for each view rather a consistent par-

ition from multiple views. Inspired by label propagation, Fu et al.

11] proposed the multi-modal constraint propagation for image

lustering. However, this method needed an extra step to obtain

he final results by clustering on the similarity matrix recomputed

y constraint propagation result, and the view weights were given

anually while inaccessible in reality. Considering the tight rela-

ionship between pairwise constraints and similarity, Zhao et al.

12] firstly proposed multi-view matrix completion that encoded

he ML and CL constraints as an observed similarity matrix, i.e.,

ransferring the constrained problem to matrix completion prob-

em. However, this method performed poorly when the amount of

onstraints is extremely scarce. The reason is that matrix comple-

ion cannot obtain a satisfying performance with a small number

f pairwise constraints (observed information). Furthermore, the

forementioned multi-view constrained clustering methods can’t

istinguish the significance of different views and may be inclined

o perform poorly if an unreliable view is involved. 

To the best of our knowledge, we are presenting the first multi-

iew constrained spectral clustering approach, which is able to

andle the issues in the existing work. 

. Methodology 

In this section, we will briefly introduce the notations and get

tarted from the spectral clustering framework. Then, the multi-

iew spectral clustering assisted with pairwise constraints is pre-

ented. 
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.1. Background and notations 

Let X = [ x 1 , x 2 , . . . , x N ] 
� ∈ R 

N×d denote the data matrix, where

 is the number of instances and d is dimension of feature.

iven the whole data matrix X , an undirected weighted graph G =
 V , E , W } can be constructed, where each instance is presented as

 vertex v ∈ V and each edge e ∈ E represents the affinity relation of

 pair of vertices. W is the weighted adjacency matrix of the graph.

n practice, to model the local neighborhood relationship between

nstances, the k-nearest neighbor graph is usually adopted. Specif-

cally, x i and x j are connected if x j is among the k-nearest neigh-

ors of x i while they are unconnected otherwise. After connecting

he appropriate vertices, we weight the edges by the similarity be-

ween their endpoints. 

Spectral clustering is an extensively used graph partitioning al-

orithm. Obviously, it’s necessary to find a partition that the edges

etween different clusters have a low weight and the edges within

he same cluster have a high weight. To reach this purpose, the

ormalized cut (Ncut) [20] , one of the most representative meth-

ds of spectral clustering, was proposed based on graph minimum

ut. The objective function of Ncut for two-class partition can be

ormulated as 

min 

f 
� 

f =1 , f 
� 

1 =0 
f 

� 
L f , 

here f = [ f 1 , f 2 , . . . , f N ] 
� ∈ R 

N×1 is the class indicator vector of

ll data and 1 is a vector with all elements being 1. For multi-class

artition, Ncut can be written as 

min 

 

� F = I 
T r( F � L F ) , 

here F = [ f 1 , f 2 , . . . , f c ] ∈ R 

N×c is the indicator matrix and each

ow of F is the indicator vector of one instance, c is the number of

lass. L denotes the normalized graph Laplacian matrix, defined as

 = I − D 

− 1 
2 W D 

− 1 
2 . D is the degree matrix whose i th diagonal ele-

ent is d ii = 

∑ N 
j=1 W i j , I is the identity matrix and Tr ( A ) denotes

he trace of matrix A . 

For multi-view data, let K be the number of views and

 X 

1 , X 

2 , . . . , X 

K } be the data matrix of all the views, where X 

k ∈
 

N×d k and d k represent data features and dimension of the k th

iew respectively. We can construct the K k-nearest neighbor

raphs { G 

1 , . . . , G 

K } and corresponding normalized Laplacian ma-

rix { L 1 , . . . , L K } . Two vital questions need to be answered by

ulti-view approaches are how to reach a consensus of clustering

nd how to express the relationship of all views. In this paper, we

inearly combine different graphs with weight μk (k = 1 , 2 , . . . , K) .

nd we further constrain indicator matrix F to be a unified one

cross all the views and minimize the Ncut for multiple graphs.

n view of that many multi-view approaches always give nonzero

eights to graphs [23,24] , we add L 2 regularizer of weighting co-

fficients in the objective function to make view weights sparse.

hat is, a part of views has nonzero weights and the weights of the

est are equal to zero. This important property provides two advan-

ages. Firstly, the graphs contain much noisy or irrelevant informa-

ion are eliminated when integrating multiple graphs by estimating

heir weights at zero. Which will improve the performance of clus-

ering. Secondly, the importance of the rest views can be identified

y the value of nonzero weighting coefficients. Where the larger

eight indicates higher importance. Thus, the multi-view spectral

ramework can be modeled as 

min 

 

� F = I 

K ∑ 

k =1 

μk 

2 

T r( F � L k F ) + 

β

2 

‖ μ‖ 

2 
2 

.t. μ ≥ 0 , μ� 1 = 1 , 
here the weight coefficient vector μ = [ μ1 , μ2 , . . . , μK ] 
� is non-

egative and the sum of view weights is equal to 1. 

.2. MVCSC for two-class partition 

To efficiently deal with pairwise constraints, we impose ML and

L constraints as a series of linear constraints with the form C f =
 , where C ∈ R 

M×N is the constraint matrix and M is the number

f pairwise constraints. ML and CL constraint can be encoded in

ows of C of the form 

(0 , . . . , 0 , −1 , 0 , . . . , 0 , +1 , 0 , . . . , 0) (Must-Link) 

(0 , . . . , 0 , +1 , 0 , . . . , 0 , +1 , 0 , . . . , 0) (Cannot-Link). 

C can be regarded as a relationship matrix “translated” from the

onstrained graph where each ML is a positive edge and each CL is

 negative edge. We assume that the m th row of constraint matrix

 m 

represents the relation between x i and x j . If they belong to the

et of ML constraints, C m 

f = f i − f j is equal to 0. It conveys that

wo different instances in the same cluster have the same indicator

alue. In contrast, if they belong to CL constraints, C m 

f = 0 controls

hat x i and x j have opposite indicator value. 

For multi-view constrained clustering, pairwise constraints are

equired to be coherent across all the views. In this paper, MVCSC

onstrains the unified indicator f to satisfy a series of ML and

L constraints through constraint function C f = 0 . In other words,

airwise constraints are effectively used to guide multi-view clus-

ering. Hence, the unified pairwise constraints are built. It can be

lso shown in the optimization that instance labels are predicted

hen iteratively updating indicator f under the constraint func-

ion. Therefore, the multi-view constrained spectral clustering can

e represented by appending the constraint function, 

in 

f , μ

K ∑ 

k =1 

μk 

2 

f 
� 

L k f + 

β

2 

‖ μ‖ 

2 
2 

.t. f 
� 

f = 1 , f 
� 

1 = 0 , C f = 0 , μ ≥ 0 , μ� 1 = 1 . 

In practice, utilizing all pairwise constraints with the form of

 f = 0 has two weaknesses. Firstly, this equality constraint is ex-

essively tight for clustering. In general, we just want the instances

n the same group to have similar indicator values and instances in

he different clusters to have distinct indicator values for cluster-

ng. The same or opposite constraints may overly distort the clus-

ering. Secondly, it cannot handle the case where some constraints

re uncertain or speculative due to noise or other factors. Thus, we

ish for a problem setup which relaxes the equality constraint and

inimizes the violation of the constraints while minimizing the

onsensus via Ncut for multiple graphs. This would lead to the fol-

owing model, where we rewrite the linear constraint function as

 f = z and add L 1 regularizer on the penalty vector z in the objec-

ive function. Using L 1 regularization, on the one hand, relaxes the

ight constraints. On the other hand, it encourages z as sparse as

ossible to reduce the number of violated constraints and concur-

ently reduce the impact of noise. The new MVCSC can be modeled

s 

in 

f , z , μ

K ∑ 

k =1 

μk 

2 

f 
� 

L k f + γ ‖ z ‖ 1 + 

β

2 

‖ μ‖ 

2 
2 

.t. f 
� 

f = 1 , f 
� 

1 = 0 , C f = z , μ ≥ 0 , μ� 1 = 1 . 

To integrate the multiple views, the first term of the objective

unction linearly combines K graphs by using weight coefficients

. The second term is the L 1 regularization of penalty vector z .

ere γ is a user-selected parameter which controls the degree of

parsity of z . The greater γ indicates that the penalty vector z is

ore sparse, i.e., more pairwise constraints are satisfied while the

inear constraints are tighter. Thus, we need choose a appropriate
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Fig. 1. An example of indicator matrix F for three-class partition. We can see that some instances in purple group and green group have similar value of x and dissimilar y 

and z . 
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γ to balance the number of satisfied constraints and constraint in-

tensity. The third term of the objective function is a L 2 regularizer

that controls the view selection with sparse weight coefficients μ.

When the k th graph is useful for clustering, μk is large. Other-

wise, when the k th view contains much noise or irrelative infor-

mation, μk tends to be zero (see Theorem 1). The parameter β
controls the sparsity of μ. We can see from (5) that μ tends to

have only one nonzero entry with small β , while all entries in μ
tend to be 1/ K with large β . We won’t identify the importance of

views under these two cases. Between two extremes, we can ob-

tain sparse weighting coefficients μ where only some entries of μ
are nonzero. In addition, we can see that the larger v i will make

the weight of i th views to be zero with greater probability. Where

the graph with larger v i contains much more noisy or irrelevant in-

formation according to v i = T r( F � L i F ) / 2 = 

∑ N 
i, j=1 W i j ( F i − F j ) 

2 / 2

[18] . Therefore, these less useful views will be more likely to be

eliminated. 

3.3. Extension to multi-class partition 

The MVCSC method can be naturally extended to multi-class

partition where c > 2. Let F ∈ R 

N×c be the indicator matrix. We still

encode pairwise constraints to constraint matrix C and use L 1 reg-

ularizer on the penalty vector z . For ML, similar with two-class par-

tition, each relaxed linear constraint of two different instances in

the same group constrains indicator vectors of them to be as pos-

sible as similar. When it comes to CL constraints, we also handle

with them through L 1 regularization. Firstly, CL constraints are re-

laxed and the indicator vectors of two instances in the different

clusters are constrained to be dissimilar. Furthermore, one thing

worth paying attention to is that the indicator matrix F is repre-

sented in multi-dimension space in the case of multi-class parti-

tion. This phenomenon implies that two different instances can be

also divided to different groups although the indicator vectors of

them are dissimilar in not all dimensions. An example of three-

class partition is shown in Fig. 1 . We can see that a part of in-

stances in purple group and green group can be also divided into

two different groups when they have dissimilar values of y and z

but similar x . Nevertheless, the number of dissimilar dimensions

can’t be less than a certain value. The partition that doesn’t follow

this rule will be fail because it can’t recognition the whole groups
ccurately. Obviously, we can further and slightly relax the linear

onstraints to achieve it. Thus, the CL are also effectively incor-

orated to multi-view clustering. The objective function for multi-

lass partitioning can be formulated as 

min 

F , Z , μ

K ∑ 

k =1 

μk 

2 

T r 
(
F � L k F 

)
+ γ ‖ Z ‖ 1 + 

β

2 

‖ μ‖ 

2 
2 

s.t. F � F = I , C F = Z , μ ≥ 0 , μ� 1 = 1 . (1)

. Optimization 

To address the optimization in (1) , we develop an iterative algo-

ithm to find the relative optimal solution with high probability. In

heory, the problem (1) can be broken down into two subproblems,

.e., one subproblem estimating indicator matrix F for predicting

nstance labels and one subproblem automatically weighting the

mportance of different views with μ. To solve the prediction sub-

roblem, we use the ADMM method [35] to alternatively update

 , Z and the lagrangian multiplier λ. For the latter, we use the La-

range Multiplier method to obtain weighting coefficients μ with

xed F and Z . Finally, we repeat these two processes until con-

erges. After obtain the final indicator matrix F , we apply K-means

lgorithm on F to find the best data partition. The proposed MVCSC

s summarized in Algorithm 1 . 

Algorithm 1: Algorithm for multi-view constrained spectral 

clustering. 

Input : graph Laplacian L k (k = 1 , 2 , . . . , K) , constraint matrix 

C , parameter ρ , γ , β , number of class c. 

Output : indicator matrix F , weighting coefficients � μ, final 

clustering results. 

1 Initialize F orthogonally, initialize λ, � μ randomly; 

2 for iter = 1 to T 1 do 

3 Optimize F according to Algorithm 2; 

4 Optimize � μ according to Algorithm 3; 

5 end 

6 Performing K-means on F to obtain final clustering results. 
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.1. Estimating indicator matrix 

When the weight vector μ is fixed, the subproblem for estimat-

ng indicator matrix F can be defined as 

min 

F , Z 

K ∑ 

k =1 

μk 

2 

T r 
(
F � L k F 

)
+ γ ‖ Z ‖ 1 

s.t. C F = Z , F � F = I . (2) 

We use the Alternating Direction Method of Multipliers

ADMM) [35] to optimize the problem (2) . The corresponding Aug-

ented Lagrangian expression on the equality constraint function

 F = Z is given by 

 ρ ( F , Z ;λ) = 

K ∑ 

k =1 

μk 

2 

T r( F � L k F ) + γ ‖ Z ‖ 1 

+ 〈 λ, C F − Z 〉 + 

ρ

2 

‖ C F − Z ‖ 

2 
F , 

hus, the objective function (2) can be transformed to a scaled

orm 

min 

 

� F = I 
L ρ ( F , Z ;λ) , 

here ρ > 0 is the penalty parameter and λ is the lagrangian mul-

iplier. 

Fixing Z , updating F . To optimize indicator matrix F , we apply a

easible method for orthogonality constraints in [36] . At first, the

rank-Nicolson-like update scheme is used to preserve the orthog-

nality constraints. We define a skew-symmetric matrix A as 

 = G F � − F G 

� 
, 

here G = ∂ L ρ ( F , Z ;λ) /∂ F . By the Crank–Nicolson-like scheme,

he new trial point Y can be determined, 

 (τ ) = F − τ

2 

A ( F + Y (τ ) ) , 

here τ is step size and Y ( τ ) is give in the closed form: 

 (τ ) = Q F ; Q = 

(
I + 

τ

2 

A 

)−1 (
I − τ

2 

A 

)
. 

he most important property of the curve Y is Y (τ ) � Y (τ ) = F � F 
or all τ ∈ R . We can see that the indicator matrix F can be ob-

ained through updating Y ( τ ). Thus, in the second step, we use the

urvilinear Search Method with Barzilai-Borwein (BB) steps [37] to

nd a suitable step size τ and update Y ( τ ). More details about this

lgorithm can be found in [36] . 

Fixing F , updating Z . For nonsmooth L 1 regularization, we em-

loy the Soft Thresholding in [38] to optimize Z . The closed-form

olution can be obtained as following, 

 = 

1 

ρ
Shrink ( λ + ρC F , γ ) , (3)

here Shrink (x, y ) = sign (x ) � max | x | −y, 0 . 

Updating λ. 

= λ + ρ( C F − Z ) . (4)

.2. Auto-weighting for views 

With the indicator vector F fixed, we update weighting coeffi-

ients μ for automatically weighting the importance of views. Ob-

iously, we can rewrite the objective function as follows: 

min 

μ
v � μ + 

β

2 

‖ μ‖ 

2 
2 

s.t. μ ≥ 0 , μ� 1 = 1 , (5) 
here v = [ v 1 , v 2 , . . . , v K ] � is a K -by-1 vector and v i represents

r ( F � L i F )/2. Without loss of generality, we assume that the entries

n v are sorted in increasing order, i.e., v 1 ≤ v 2 ≤ ��� ≤ v K . 

heorem 1. The optimal solution of the problem in (5) is analytically

iven by 

k = 

{
θ−v k 

β
k ≤ P 

0 k > P 

here 

P = argmax 
k 

(θ − v k > 0) 

= 

∑ P 
k =1 v k + β

P 
. 

roof. (5) is a quadratic optimization problem and can be opti-

ized by Lagrange Multiplier method. 

 ( μ, η, θ ) = v � μ + 

β

2 

‖ μ‖ 

2 
2 − η� μ − θ ( μ� 1 − 1) , 

here η = [ η1 , η2 , . . . , ηK ] 
� ≥ 0 and θ ≥ 0 ar e the lagrangian mul-

ipliers. The optimal solution μ∗ satisfies the KKT condition: 

 μL ( μ∗, η, θ ) = v + βμ∗ − η − θ1 = 0 (6) 

∗ ≥ 0 , μ∗� 1 − 1 = 0 (7) 

≥ 0 (8) 

∗
k ηk = 0 (9) 

rom (6) , we can obtain: 

k = 

ηk + θ − v k 
β

, 

t can be discussed separately in three cases according to (7) –(9) : 

(1) When θ − v k > 0 , since ηk ≥ 0, we get μk > 0. From the con-

dition μ∗
k 
ηk = 0 , it can be obtained that ηk = 0 . Then, μk =

θ−v k 
β

. 

(2) When θ − v k = 0 , μk = ηk /β, from the condition μ∗
k 
ηk = 0 ,

we infer that ηk = 0 , μk = 0 . 

(3) When θ − v k < 0 , if μk > 0, then ηk > 0, that is inconsistent

whit μ∗
k 
ηk = 0 . Thus, we get μk ≤ 0. And because μk ≥ 0,

we get μk = 0 . Therefore, with v increasing, we can find

the positive integer P = argmax k (θ − v k > 0) . The optimality

conditions are summarized as follows: 

k = 

{
θ−v k 

β
k ≤ P 

0 k > P . 

From μ� 1 = 1 , i.e., 
∑ P 

k =1 μk = 1 , we can get: 

= 

∑ P 
k =1 v k + β

P 
. �

.3. Time complexity analysis 

The time complexity of MVCSC mainly depends on the com-

utation of Algorithms 2 and 3 . In Algorithm 2 , the complex-

ty of F is determined by the computation of G , A and Y( τ) . To

ompute G and A , it needs to take O(N 

2 c + N 

2 M) and O(N 

2 c) . The

omputation of Y ( τ ) can be O(c 2 N + c 3 ) according to [39] . So the

omputation complexity of F is O(T τ × (N 

2 c + N 

2 M + c 2 N + c 3 )) ,

here T τ is the iteration number of searching an appropriate τ
ith BB steps [37] . Z and λ have the same computation cost of

(MNc) . As c 
 N, M 
 N , Algorithm 2 takes O(T × (T τ × (N 

2 ×
2 



6 C. Chen, H. Qian and W. Chen et al. / Neurocomputing 366 (2019) 1–11 

Algorithm 2: ADMM for estimating indicator matrix F . 

Input : graph Laplacian L k (k = 1 , 2 , . . . , K) ,constraint matrix 

C , weighting coefficients � μ, parameter ρ , γ . 

Output : indicator matrix f . 

1 for iter = 1 to T 2 do 

2 Update f by using the Curvilinear Search Method with BB 

steps [37]; 

3 Update z according to Eq.(3); 

4 Update λ according to Eq.(4); 

5 end 

Algorithm 3: Lagrange Multiplier for Auto-Weighting. 

Input : sorted vector � v , parameter β . 

Output : weight vector � μ. 

1 for P ← 1 to K do 

2 θ ← ( 
∑ P 

k =1 v k + β) /P ; 

3 if P ← argmax k (θ − v k > 0) then 

4 break; 

5 end 

6 end 

7 μk ← (θ + v k ) /β, k ≤ P ; 

8 μk ← 0 , k > p. 
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2 https://archive.ics.uci.edu/ml/datasets/Multiple+Features . 
3 https://github.com/gnaixgnaw/CSP . 
max (c, M)))) , where T 2 is the number of iterations in Algorithms

2 . In Algorithms 3 , each iteration for the loop takes O(K) to get the

maximal number P . It is obvious that the computational complex-

ity of the entire process is O(K 

2 ) . As K 
 N , the overall complexity

of MVCSC is O(T 1 × T 2 × (T τ × (N 

2 × max (c, M)))) , where T 1 is the

number of iterations of Algorithm 1 . In our experiments, T τ and T 2 
are usually less than 5, and T 1 is usually less than 10. 

5. Experiment 

In this section, we compare the performance of our multi-view

constrained spectral clustering with several state-of-the-art meth-

ods on various multi-view datasets. 

5.1. Data set description 

Synthetic data consists of six views. The first two views are

generated by three component Gaussian mixture model. The fea-

tures are correlated. We sample 100 points for view1 and view2.

The cluster means in view1 are μ(1) 
1 

= (1 1) , μ(1) 
2 

= (3 4) , μ(1) 
3 

=
(1 3) , and in view2 are μ(2) 

1 
= (1 2) , μ(2) 

2 
= (2 4) , μ(2) 

3 
= (3 2) .

The covariances of two views are given below. For view3 and

view4, we add a small amount of random noise based on view1

and view2. The last two views are generated to be irrelevant by

reordering view1 and view2. 

	(1) 
1 

= 

(
1 0 . 5 

0 . 5 1 . 5 

)
, 	(1) 

2 
= 

(
0 . 3 0 . 2 

0 . 2 0 . 6 

)
, 	(1) 

3 
= 

(
1 . 2 0 . 2 

0 . 2 1 

)

	(2) 
1 

= 

(
1 0 . 2 

0 . 2 1 

)
, 	(2) 

2 
= 

(
0 . 6 0 . 1 

0 . 1 0 . 5 

)
, 	(2) 

3 
= 

(
1 0 . 4 

0 . 4 0 . 7 

)

20Newsgroups 1 data is a synthetic dataset and collects approx-

imately 20 0 0 0 newsgroup documents. We choose 12 newsgroups

from three categories Comp, Rec, Talk, and each category has four

newsgroups. In each category, we generate 10 relevant views and

5 irrelevant views. For relevant views, we randomly sample 400
1 http://qwone.com/%7Ejason/20Newsgroups/ . 
ocuments from 4 news groups (100 documents from each group).

or irrelevant views, we randomly choose 5 views from 10 relevant

iews and reorder them. 

Reuters [24] consists of documents that are written in five dif-

erent languages and their translations (English, French, German,

panish, and Italian). All the documents are categorized into 6

lasses. We randomly sample 1200 documents (200 documents for

ach class). After generating five different languages graphs, we re-

rder them to generate five irrelevant views. 

Caltech-101 data [40] consists of 101 categories of images. We

hoose the widely used 7 classes which contain totally 1474 im-

ges, i.e., faces (435), motorbikes (798), dollar _ bill (52), garfield

34), snoopy (35), stop _ sign (64), windsor _ chair (56). We call it

altech-07 . Six features are provided, i.e., 48 dimension Gabor fea-

ure, 40 dimension wavelet moments, 254 dimension CENHIST fea-

ure, 1984 dimension HOG feature, 512 dimension GIST feature,

28 dimension LBP feature. 

Handwritten 2 is a handwritten digits ( 0 − 9 ) data from the UCI

epository. It consists of 20 0 0 samples and each class has 200

atterns. We use six features including 76 Fourier coefficients

f the character shapes (FOU), 216 profile correlations (FAC), 64

arhunen–Love coefficients (KAR), 240 pixel averages in 2 × 3 win-

ows (Pix), 47 Zernike moments (ZER), 6 morphological features

MOR). 

.2. Experimental settings 

We will evaluate our proposed MVCSC with several baseline

pproaches. These baseline methods can be divided into three

ategories: single view constrained clustering, multi-view uncon-

trained clustering and multi-view constrained clustering. 

• Self-taught spectral framework ( SF 3 ) [33] : SF is a single-view

constrained clustering algorithm based on spectral clustering. It

effectively improves the utilization of pairwise constraints by

incorporating self-teaching. Thus, SF is compared as the single

view baseline. Since our datasets consist of multiple views, we

choose the best clustering performance SF_best and its fused

performance SF_fusion , where the fused Laplacian matrix is de-

fined as L = 1 /K 

∑ K 
k =1 L k . 

• Co-regularization multi-view spectral clustering ( Co − reg 4 )

[21] : Co-reg is a classical and well-known multi-view spec-

tral clustering which has a favour of the co-regularization idea.

This method is selected as one of two comparative methods for

multi-view unconstrained clustering. 

• Auto-weighted multiple graph learning ( AMGL 5 ) [23] : AMGL is

a multi-view approach via reformulating the standard spectral

learning model, which automatically learns an optimal weight

without introducing an additive parameter. AMGL will be com-

pared as the second multi-view unconstrained clustering. 

• Multi-view constraint propagation ( MMCP ) [11] : Inspired by la-

bel propagation, MMCP propagates the pairwise relationship

via both vertical and horizontal propagation, two independent

multi-graph based propagation methods. The propagated con-

straints are further used to refine similarities of instances. Fi-

nally, the prediction performance of MMCP is obtained by ap-

plying spectral clustering on the new similarity matrix. MMCP

is introduced as the first multi-view constrained baseline. 

• Multi-view matrix completion with side information ( MVMC 

6 )

[12] : Considering the tight relation between similarities and
4 https://github.com/areslp/matlab/tree/master/code _ coregspectral . 
5 http://www.escience.cn/people/fpnie/index.html . 
6 http://lamda.nju.edu.cn/zhaop/ . 

http://qwone.com/%7Ejason/20Newsgroups/
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://github.com/gnaixgnaw/CSP
https://github.com/areslp/matlab/tree/master/code_coregspectral
http://www.escience.cn/people/fpnie/index.html
http://lamda.nju.edu.cn/zhaop/
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Fig. 2. Comparations of clustering performance between other state-of-the-art approaches and the proposed MVCSC on Caltech-07 and Handwritten datasets with respect 

to the averaged ARI, NMI, ACC (the higher, the better). R is used to measure the amount of pairwise constraints which varies 0.01% to 0.1%. 
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Fig. 3. The average weights over 10 run on Synthetic and 20Newsgroups datasets 

with R = 0 . 01% . 

Table 1 

Statistics of evaluated datasets. 

Dataset size view cluster 

Synthetic data 300 6 3 

20News.Comp 400 15 4 

20News.Rec 400 15 4 

20News.Talk 400 15 4 

Reuters 1200 10 6 

Caltech-07 1474 6 7 

Handwritten 2000 6 10 
pairwise constraints, MVMC transfers constrained clustering

problem to similarity matrix completion problem. The similar-

ity matrix updates iteratively with the help of data form mul-

tiple modalities or representations. To obtain the clustering re-

sults, MVMC also performs the spectral clustering on the final

similarity matrix. MVMC is chosen as the second comparative

multi-view constrained clustering method. 

Pairwise Constraints: For the construction of the constraint ma-

rix C , we randomly select a pair of samples and repeat M times. If

he pair instances have the same label, we form them as ML while

s CL otherwise. R is used to measure the number of constraints,

.e., R = M/N 

2 . We vary R from [0 . 01% , 0 . 02% , . . . , 0 . 1%] . 

Metrics: For the experiment results, we report three metrics:

he Adjusted Rand Index ( ARI ) [41] , the Normalized Mutual In-

ormation ( NMI ) and the Clustering Accuracy ( ACC ) [42] . We note

hat all the metrics lie in the interval [0,1], and the higher result

emonstrates the better clustering performance. Each experiment

andomly run 10 times and the averaged ARI, NMI, ACC are re-

orted. 

Settings: For Synthetic dataset, we compute the similarities us-

ng Gaussian kernel (width σ = 1 ). For 20Newsgroups dataset and

euters dataset, the similarities are computed based on cosine sim-

larity. For these three data sets, the corresponding 10 NN graphs

re constructed. For Caltech-07 and Handwritten, we use the Gaus-

ian kernel (width σ = 1 ) to compute the affinity matrix and con-

truct 5 NN graphs. 

.3. Results 

Due to the space limitation, we only present the Figs. 2 and

 and Tables 2–4 in experiments section to demonstrate the pro-

osed MVCSC approach. The Tables 2–4 respectively summarize

he comparison with R = [0 . 01% , 0 . 04% , 0 . 07% , 0 . 1%] for Synthetic

ataset, 20Newsgroups, and Reuters. Fig. 2 summarizes the per-

ormance with respect to ARI, NMI and ACC on Caltech-07 and

andwritten datasets when R increases from 0.01% to 0.1%. The
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Table 2 

The averaged ARI results on Synthetic data, 20Newsgroups and Reuters for different baselines and MVCSC. 

Datasets Ration SF_best SF_fusion Co-reg AMGL MVMC MMCP MVCSC 

Synthetic data 0.01% 0.2314 0.7540 0.7642 0.8002 0.3462 0.7726 0.8313 

0.04% 0.2663 0.7624 0.7642 0.8002 0.4589 0.7821 0.8556 

0.07% 0.2929 0.7633 0.7642 0.8002 0.6915 0.7993 0.8634 

0.1% 0.3311 0.7810 0.7642 0.8002 0.7106 0.8096 0.8737 

20News.Comp 0.01% 0.0873 0.6812 0.7885 0.8801 0.0176 0.7460 0.9021 

0.04% 0.0949 0.6882 0.7885 0.8801 0.0238 0.7879 0.9215 

0.07% 0.1158 0.6976 0.7885 0.8801 0.0466 0.8112 0.9411 

0.1% 0.1157 0.7001 0.7885 0.8801 0.0531 0.8316 0.9481 

20News.Rec 0.01% 0.0579 0.4678 0.8664 0.9320 0.0112 0.8134 0.9578 

0.04% 0.0927 0.4874 0.8664 0.9320 0.0289 0.8360 0.9741 

0.07% 0.0985 0.4885 0.8664 0.9320 0.0646 0.8541 0.9794 

0.1% 0.1017 0.5717 0.8664 0.9320 0.0841 0.8734 0.9801 

20News.Talk 0.01% 0.1193 0.4961 0.8702 0.8519 0.0113 0.8207 0.8893 

0.04% 0.1284 0.5597 0.8702 0.8519 0.0233 0.8586 0.8976 

0.07% 0.1753 0.5788 0.8702 0.8519 0.0496 0.8706 0.9010 

0.1% 0.1966 0.6402 0.8702 0.8519 0.0525 0.8958 0.9201 

Reuters 0.01% 0.3554 0.6542 0.7770 0.8708 0.1458 0.6217 0.8981 

0.04% 0.3639 0.6841 0.7770 0.8708 0.2275 0.6778 0.9205 

0.07% 0.3824 0.7015 0.7770 0.8708 0.2935 0.6856 0.9376 

0.1% 0.3888 0.7224 0.7770 0.8708 0.4322 0.7055 0.9445 

Table 3 

The averaged NMI results on Synthetic data, 20Newsgroups and Reuters for different baselines and MVCSC. 

Datasets Ration SF_best SF_fusion Co-reg AMGL MVMC MMCP MVCSC 

Synthetic data 0.01% 0.3748 0.6980 0.6935 0.7362 0.3486 0.7157 0.7710 

0.04% 0.3941 0.7087 0.6935 0.7362 0.4422 0.7231 0.7970 

0.07% 0.4059 0.7088 0.6935 0.7362 0.6365 0.7410 0.8055 

0.1% 0.4067 0.7249 0.6935 0.7362 0.6554 0.7497 0.8167 

20News.Comp 0.01% 0.1841 0.7995 0.7899 0.8709 0.0262 0.7298 0.8868 

0.04% 0.1919 0.8017 0.7899 0.8709 0.0404 0.7516 0.9051 

0.07% 0.2202 0.8172 0.7899 0.8709 0.0618 0.7916 0.9228 

0.1% 0.2216 0.8278 0.7899 0.8709 0.7690 0.8050 0.9292 

20News.Rec 0.01% 0.2367 0.6219 0.8531 0.9149 0.0297 0.7979 0.9250 

0.04% 0.2415 0.6636 0.8531 0.9149 0.0554 0.8103 0.9351 

0.07% 0.2487 0.6755 0.8531 0.9149 0.0724 0.8321 0.9425 

0.1% 0.2732 0.6871 0.8531 0.9149 0.1048 0.8582 0.9501 

20News.Talk 0.01% 0.3008 0.5481 0.8329 0.8454 0.0261 0.7815 0.8645 

0.04% 0.3216 0.6072 0.8329 0.8454 0.0459 0.8228 0.8763 

0.07% 0.3262 0.6529 0.8329 0.8454 0.0617 0.8365 0.8779 

0.1% 0.3508 0.6488 0.8329 0.8454 0.0755 0.8661 0.9048 

Reuters 0.01% 0.1952 0.4831 0.6778 0.8710 0.1113 0.4085 0.8947 

0.04% 0.2007 0.5387 0.6778 0.8710 0.1589 0.4847 0.9126 

0.07% 0.2145 0.5786 0.6778 0.8710 0.2057 0.5528 0.9284 

0.1% 0.2500 0.6015 0.6778 0.8710 0.2794 0.5942 0.9327 

Table 4 

The averaged ACC results on Synthetic data, 20Newsgroups and Reuters for different baselines and MVCSC. 

Datasets Ration SF_best SF_fusion Co-reg AMGL MVMC MMCP MVCSC 

Synthetic data 0.01% 0.5733 0.9133 0.9167 0.9300 0.6066 0.9200 0.9413 

0.04% 0.5900 0.9166 0.9167 0.9300 0.7750 0.9233 0.9501 

0.07% 0.6267 0.9167 0.9167 0.9300 0.8850 0.9301 0.9533 

0.1% 0.7067 0.9233 0.9167 0.9300 0.8933 0.9333 0.9567 

20News.Comp 0.01% 0.4825 0.7402 0.9100 0.9525 0.3113 0.8975 0.9620 

0.04% 0.4901 0.7450 0.9100 0.9525 0.3475 0.9151 0.9695 

0.07% 0.5201 0.7551 0.9100 0.9525 0.3688 0.9250 0.9775 

0.1% 0.5225 0.7575 0.9100 0.9525 0.3963 0.9325 0.9802 

20News.Rec 0.01% 0.4625 0.5125 0.9475 0.9728 0.3288 0.9251 0.9840 

0.04% 0.4675 0.5200 0.9475 0.9728 0.3401 0.9350 0.9903 

0.07% 0.4725 0.5202 0.9475 0.9728 0.3550 0.9425 0.9922 

0.1% 0.4751 0.6800 0.9475 0.9728 0.3888 0.9500 0.9925 

20News.Talk 0.01% 0.4251 0.6825 0.9500 0.9521 0.3200 0.9300 0.9580 

0.04% 0.4500 0.6925 0.9500 0.9521 0.3388 0.9451 0.9613 

0.07% 0.5075 0.7001 0.9500 0.9521 0.3451 0.9500 0.9625 

0.1% 0.5351 0.8352 0.9500 0.9521 0.3725 0.9610 0.9701 

Reuters 0.01% 0.4800 0.6608 0.7792 0.9450 0.3413 0.6375 0.9571 

0.04% 0.4851 0.7283 0.7792 0.9450 0.4092 0.6817 0.9664 

0.07% 0.4867 0.7325 0.7792 0.9450 0.4401 0.7275 0.9736 

0.1% 0.5108 0.7583 0.7792 0.9450 0.5021 0.7533 0.9767 
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Fig. 4. Parameters sensitivity of γ and β on Synthetic dataset with R = 0 . 1% . 

Fig. 5. The convergence analysis from the perspectives of the loss on Synthetic and 

Caltech-07 datasets with R = 0 . 01% . 
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ig. 3 shows the view weights for Synthetic datasets and 20News-

roups dataset. 

From Synthetic data results in Tables 2–4 , we can see the

roposed MVCSC gives the best performance in all criteria. On the

ne hand, when R grows, the performance of MVCSC gradually im-

roves. In addition, MVCSC gives higher accuracy on all three met-

ics than multi-view clustering methods Co-reg and AMGL. Based

n these, we can infer that MVCSC can efficiently handle with pair-

ise constraints. Besides it, neither MVMC nor MMCP outperforms

VCSC. The first reason is that MVMC and MMCP have a lower

tilization of pairwise constraints. Another reason is that they can’t

iffer the importance of different views. In stark contrast, MVCSC

ets the weights of unrelated view5 and view6 to 0 in the Fig. 3 (a).

eanwhile, the weights of noisy view3 and view4 are lower than

hose of view1 and view2. On the other hand, the single view

onstrained clustering SF _ best behaves worst due to that it can

nly exploit single view data. SF _ fusion ignores the correlation

etween multiple views and also can’t perform well compared to

VCSC. 

From the document clustering results on 20Newsgroups and

euters datasets in Tables 2–4 , we can see MVCSC shows a sur-

risingly better performance than all baselines on all criteria. With

espect to multi-view semi-supervised methods, as the number of

airwise constraints grows, the performance of MVCSC improves

ore significantly than those of MMCP and MVMC. It demon-

trates that the MVCSC can incorporate the pairwise constraints

nto multi-view clustering more effectively and efficiently. Besides

t, MVCSC eliminates the last 5 irrelevant views with zero weight,

hich is shown in Fig. 3 (b)–(d). In contrast, MMCP and MVMC

an’t differ the importance of different views and perform unsat-

sfactorily. In addition, it’s crucial to mention that the number of

ampled pairwise constraints only accounts for 0.01% to 0.1%. It is

ncouraging that, with such limited constraint information, MVCSC

till yields a satisfying behavior. SF _ best and SF _ fusion, although

heir performance also benefit from the increasing constraints, per-

orm poorly due to that they only make use of single view data and

imply fuse multiple graphs respectively. MVCSC reasonably inte-

rates the multi-view data and outperforms them. As compared

ith the multi-view unconstrained method Co-reg and AMGL, the

mprovement which MVCSC achieves is significant by incorporating

he pairwise constraints. It demonstrates that pairwise constraints

s of great value for multi-view clustering. 

From the image clustering on datasets Caltech-07 and Hand-

ritten in Fig. 2 , we can see that the proposed MVCSC outper-

orms all the baselines by a significant margin on almost all cases.

e also find an obvious improvement of MVCSC along with the

rowth of R . Furthermore, MVCSC is able to demonstrate a much

etter behavior when pairwise constraints extremely scarce. For

xample, when the number of pairwise constraints only accounts

or 0.01%, MVCSC gives a ARI value of 0.8988 while MVMC and

MCP only give 0.4774 and 0.6698 respectively. It proves that

VCSC gives more guidance for partition than MVMC and MMCP.

fter incorporating pairwise constraints, MVCSC achieves a large

mprovement compared with AMGL and Co-reg, the multi-view

nconstrained clustering methods. This phenomenon implicates

hat pairwise constraints have large leverage in multi-view clus-

ering. Similar to the situation on the document clustering, SF _ best

nd SF _ fusion behave poorly although their performance benefits

rom the increasing number of constraints. MVCSC learns the un-

erlying consistent structure of multi-view data and outperforms

hem. 

.4. Parameter sensitivity 

In this part, we further study how our approach performs when

sing different settings of parameters. We tune the trade-off pa-
ameters γ , β in the range of 0.001, 0.01, 0.1, 1, 10, 100, 1000 on

ynthetic dataset. For studying the effect without constraints, we

urther consider the case when γ = 0 . 

Effects of γ . As shown in Fig. 4 (a), the performance of MVCSC

ets better when γ increases from 0.001 to 0.01, which reflects

hat more constraints are satisfied, thereby improving the quality

f the partition. When γ keeps going up, the prediction error will

ot be well controlled, which makes our approach to produce poor

rediction results. When γ is 0 (without constraints), MVCSC can

till effectively capture the underlying structure of the data and

chieve satisfactory performance. 

Effects of β . As an illustration in Fig. 4 (b), we can see that the

ptimal locates within [2,5]. When β is too small, weights will

e assigned to only a few domains such that not enough relevant

iews will be integrated. When β is larger than 5, it is easy to see

 decreasing trend instead. In these cases, weights will be aver-

gely assigned to all views such that irrelevant views will be in-

olved. 

.5. Convergence analysis 

The original problem (1) is not a joint convex problem with re-

pect to F and μ. Thus, it can’t be guaranteed to obtain a global op-

imum. For the first subproblem (2) , the indicator matrix F would

et a global solution with either full or high probability accord-

ng to [36] . And the solution of Z is in closed-form. Obviously, the

ther subproblem (5) is convex and has a closed-form solution.

hus, our method will converge to a local optimum in most cases.

n addition, we empirically test the convergence of the proposed

ethod on Synthetic and Caltech-07 datasets from two aspects:

he loss and the relative difference of variables. As illustrated in

ig. 5 , our algorithm is able to achieve a rapid convergence within

nly a few iterations (less than 10) from the perspectives of the

oss. From Fig. 6 , we can see the relative difference between two

uccessive iterates is decreasing to a small value of approximately

ero, which further illustrates the convergence of the algorithm.

imilar results can be observed on other datasets. 
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Fig. 6. The convergence analysis from the perspectives of variables on Synthetic 

and Caltech-07 datasets with R = 0 . 01% . 
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6. Conclusion 

In this paper, we present a novel multi-view constrained clus-

tering algorithm MVCSC, which is the first study to incorporate

pairwise constraints to multi-view clustering based on spectral

clustering framework. To efficiently handle with pairwise con-

straints, MVCSC constructs consistent ML and CL for multi-view

clustering by imposing them as a set of linear constraints on the

unified indicator matrix. MVCSC has the following characteristics:

(1) based on spectral clustering framework, it is applicable to

multi-class partition of arbitrary data distribution; (2) it can simul-

taneously and efficiently handle with both ML and CL for multi-

view clustering; (3) it can automatically learn the weights for

different views and eliminate the views contains much noisy or

irrelevant information. MVCSC has been tested in constrained clus-

tering tasks on various multi-view datasets and outperforms the

state-of-the-art approaches. 
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